EV Mechanica

Subscribe to EV Mechanica's Current Newsletter & never miss an update!

    Close Menu
      Facebook X (Twitter) Instagram
      EVMechanicaEVMechanica
      EVMechanicaEVMechanica
      • Home
      • News
        • E-Mobility
        • EV Battery
      • Charging Stations
      • Policy
      • Research
      • Interview
      • Jobs
      • Events
      • E-Mag
      • Subscription
      Facebook YouTube LinkedIn WhatsApp
      EVMechanicaEVMechanica
      Home » IIT-Madras Develops Cost-Effective Zinc Air Batteries

      IIT-Madras Develops Cost-Effective Zinc Air Batteries

      Aishwarya SaxenaBy Aishwarya SaxenaMay 31, 2022Updated:June 10, 2022 EV Battery 3 Mins Read
      Share
      Facebook Twitter LinkedIn WhatsApp

      Indian Institute of Technology, Madras (IIT-Madras) researchers have developed mechanically-rechargeable zinc-air batteries as an alternative to lithium-ion (Li-ion) batteries.

      IIT-Madras Zinc Air Batteries
      Aravind Kumar Chandiran (Centre), Assistant Professor, Department of Chemical Engineering, IIT Madras, and research team with zinc air

      After filing for patents, these researchers under Aravind Kumar Chandiran, assistant professor at the Department of Chemical Engineering, IIT-Madras, are collaborating with major industries to develop these zinc-air batteries.

      “For a given vehicle, two Li-ion batteries have to be employed, one on the vehicle and another for charging. This adds to the capital expenditure. However, with zinc-air, it is the cheap anode that has to be replaced. These anodes have the shape of cassettes. Except for the anode, every other component is fixed with the vehicle. Only the anode cassettes are replaced. The anode is zinc, which upon discharging, converts to zinc oxide. Once the zinc oxide cassettes are pulled out, fresh zinc cassettes will be inserted into the vehicle. The spent zinc oxide cassettes would be regenerated using solar energy using electrochemical stations,” explains Chandiran.

      “In our laboratory at IIT-Madras, we have invented low-cost and safe metal-air battery systems and that metal is based on zinc. These metal-air batteries are nearly three times cheaper even at the scale at which we have developed them. Also, the technology has been developed in-house. We have abundant amounts of zinc within the country, which makes it unique. India will own the technology and have the safest technology for its next-generation energy storage systems. These batteries can potentially be used in EVs for low-powered applications like two-wheelers and three-wheelers and also stationary energy storage systems,” says Chandiran.

      “Speaking of stationary energy storage, solar energy is available during the daytime, and that energy peaks around midday and weans off towards the end of the day. To store that excess energy that is available at mid-day, we use batteries. So far we have options based on lead-acid or lithium-ion battery technologies. But India doesn’t own any of these technologies, so we will have to move to our in-house technologies with resources available domestically. Zinc is found abundantly in India and we are also one of its largest producers,” he adds.

      “Our research group is developing a futuristic model for zinc-air batteries for EVs. Through this research, we are also identifying shortcomings in existing technology and finding ways to address them. The research team has currently developed zinc-air cells and is working towards developing zinc-air packs for EVs. The elements involved in this battery cell are Zinc (anode), electrolyte (an aqueous system with potassium hydroxide) and a thin layer of platinum-coated gas diffusion layer (few mg /cm2). These zinc-air batteries use aqueous electrolytes and hence are inherently safe,” says Chandiran.

      “We are working with OEMs and expect to put them on the road after a couple of tests. Optimistically, we would require two years before we see a fruitful outcome on the road, as we would like to do rigorous testing before we employ them in vehicles,” he adds.

      Akin to petrol stations for IC-engine vehicles, the researchers are mooting separate ‘Zinc Recharge Stations’. Based on ‘Battery-Swapping’ technology, EV users can swap used ‘zinc cassettes’ of the battery with fully-charged ‘zinc cassettes’ at these ‘Zinc recharge stations.’

      energy storage systems EVs IIT-Madras lithium-ion (Li-ion) batteries news researchers zinc-air batteries
      Share. Facebook Twitter LinkedIn WhatsApp
      Aishwarya Saxena

      More article from Aishwarya Saxena

      Keep Reading

      EV and Auto Stocks Show Mixed Results on July 2: Bharat Forge and UNO Minda Lead Gainers

      EV & Auto Stocks Mixed on July 1: HBL Engineering, Olectra Greentech Lead Gainers Amid Volatile Session

      EV and Auto Stocks Mixed on June 27

      Leave A Reply Cancel Reply

      twenty + seventeen =

      E-MOBILITY

      Omega Seiki Mobility: Rising challenger in India’s EV market

      July 2, 2025

      Chennai receives 120 electric buses via global initiative

      July 2, 2025

      TVS iQube gets 3.1 kWh variant, 123km range

      July 2, 2025

      MG, Mahindra surpass Tata in India’s EV market

      July 2, 2025

      Articles

      Why Fintech Innovation is the Catalyst for EV Adoption in Tier 2 India

      While we have heard about the electric vehicle (EV) revolution in India, as it continues…

      Is Silver the New Strategic Metal for the EV and Clean Energy Revolution?

      The transition to sustainable energy systems and electric vehicles (EVs) is not a pipe dream;…

      EV Incentive Phase-Out: What Happens After FAME-II Ends in India?

      As India made progress creating new clean transport, there is a significant change with the…

      © 2025 EVMechanica.com.
      • Home
      • About Us
      • Contact Us
      • Subscription

      Type above and press Enter to search. Press Esc to cancel.